Stability of the Griffiths phase in a 2D Potts model with correlated disorder
نویسنده
چکیده
A Griffiths phase has recently been observed by Monte Carlo simulations in the 2D q-state Potts model with strongly correlated quenched random couplings. In particular, the magnetic susceptibility was shown to diverge algebraically with the lattice size in a broad range of temperatures. However, only relatively small lattice sizes could be considered, so one can wonder whether this Griffiths phase will not shrink and collapse into a single point, the critical point, as the lattice size is increased to much larger values. In this paper, the 2D eight-state Potts model is numerically studied for four different disorder correlations. It is shown that the Griffiths phase cannot be explained as a simple spreading of local transition temperatures caused by disorder fluctuations. As a consequence, the vanishing of the latter in the thermodynamic limit does not necessarily imply the collapse of the Griffiths phase into a single point. By contrast, the width of the Griffiths phase is controlled by the disorder strength. However, for disorder correlations decaying slower than 1/r , no cross-over to a more usual critical behavior could be observed as this strength is tuned to weaker values.
منابع مشابه
[hal-00798317, v3] Hyperscaling violation in the 2D 8-state Potts model with long-range correlated disorder
The first-order phase transition of the two-dimensional eight-state Potts model is shown to be rounded when long-range correlated disorder is coupled to energy density. Critical exponents are estimated by means of large-scale Monte Carlo simulations. In contrast to uncorrelated disorder, a violation of the hyperscaling relation γ/ν = d− 2xσ is observed. Even though the system is not frustrated,...
متن کاملHyperscaling violation in the 2D 8-state Potts model with long-range correlated disorder
The first-order phase transition of the two-dimensional eight-state Potts model is shown to be rounded when long-range correlated disorder is coupled to energy density. Critical exponents are estimated by means of large-scale Monte Carlo simulations. In contrast to uncorrelated disorder, a violation of the hyperscaling relation γ/ν = d− 2xσ is observed. Even though the system is not frustrated,...
متن کاملPrecursor phenomena in frustrated systems.
To understand the origin of the dynamical transition, between high-temperature exponential relaxation and low-temperature nonexponential relaxation, that occurs well above the static transition in glassy systems, a frustrated spin model, with and without disorder, is considered. The model has two phase transitions, the lower being a standard spin glass transition (in the presence of disorder) o...
متن کاملPotts fully frustrated model: thermodynamics, percolation, and dynamics in two dimensions
We consider a Potts model diluted by fully frustrated Ising spins. The model corresponds to a fully frustrated Potts model with variables having an integer absolute value and a sign. This model presents precursor phenomena of a glass transition in the high-temperature region. We show that the onset of these phenomena can be related to a thermodynamic transition. Furthermore, this transition can...
متن کاملDisorder-driven phase transitions of the large q-state Potts model in three dimensions
– Phase transitions induced by varying the strength of disorder in the large-q state Potts model in 3d are studied by analytical and numerical methods. By switching on the disorder the transition stays of first order, but different thermodynamical quantities display essential singularities. Only for strong enough disorder the transition will be soften into a second-order one, in which case the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014